Tag Archives: hydraulic breaker

China OEM Back Head Main Body Sb40 Sb43 Sb45 Sb50 Hydraulic Breaker Parts Front Head Cylinder with Great quality

Product Description

Product Description

 We are manufacturer of hydraulic breakers/hammers and replacement spare parts for hydraulic breakers of, Hanwoo,NPK montabert, rammer, atlas copco, MSB etc., The hydraulic breaker parts we have are: front head, back head, cylinder, chisel tool, seal kits ,piston, diaphragm, thrust bush, ring bush, front cover ,rod pin/chisel pin, stop pin, accumulator, through bolt, side bolt , bracket, upper cushion, lower cushion ,damper etc.
We can also make and install excavator hydraulic kits/hammer lines/piping kits/hydraulic installation kits/breaker lines for hydraulic hammer, hydraulic shear, hydraulic crusher, quick coupler, demolition grab, power rammer etc. We can also supply other excavator parts.
       

 

Production and Processing

 

Company Information

HangZhou Changhao Mechanical Equipment Co., Ltd.

Our company mainly produces hydraulic breaker parts and breaker pipeline parts.  We can supply different kinds of hydraulic breaker spare parts, such as chisel, oil seal, through bolt, side bolt, nitrogen bottle, cover & bush, tool box, oil tube, filter, piston, piston ring, front head, back head, cylinder, flat pin, round pin, etc. 

 The hydraulic breaker/hammer spare parts we supply are front head, cylinder,back head, chisel, piston,seal kits,diaphragm,front cover, thrush bush,ring bush,charging valve,accumulator,through bolt,side bolt, bracket, N2 charging device etc.
Excavator hammer lines/piping kits/auxiliary installation pipelines for attachment are available too.

All the accessories of our pipeline, including clamps, ball valves, Overflow valve, foot valve, iron pipe, hose, etc. All of our pipelines are acid-washed and phosphated to ensure that the inside of the pipeline is clean and dust-free, and the hydraulic system of the excavator is clean and pollution-free. Our company's product pipelines are welded by domestic first-class welders. After welding, the joints are formed by single-sided welding and double-sided welding to ensure that the product will never leak oil. 

Our products have been exporting to many countries in the world with advanced machines and strict quality control management, the advanced production equipment and impeccable QC system help us make sure the highest-quality and cost-effective products.Our products have reached the international advanced level. Cooperating with large number of well-known dealers in the domestic and foreign market. We have our own production plant, covering an area of about 3000 square meters. Our workers are skilled in craftsmanship and rich in experience, coupled with the blessing of advanced machinery and equipment, the quality of the products delivered is safe and reliable.Our products are of high quality, reasonable prices and efficient delivery. 

High quality,competitive price and innovative products can be promised and stock samples can be available for your evaluation. 
Welcome to visit our factory and contact us!

Main Products

   

     Pipeline section view

Our pipeline series are complete, including all series from Carter,  Hitachi, Volvo, Kobelco,  Xugong, Liugong. All of our pipelines are acid-washed and phosphated to ensure that the inside of the pipeline is clean and dust-free, and the hydraulic system of the excavator is clean and pollution-free.
The outer surface of the pipeline is sprayed with plastic paint, and the colors are various, which are exactly the same as the color of the excavator body. Meet all your requirement for color.
All the accessories of our pipeline, including clamps, ball valves, overflow valve, foot valve, iron pipe, hose,etc, are independently developed and manufactured by our factory to ensure product quality, safety and reliability.

Our company's product pipelines are welded by domestic first-class welders. After welding, the joints are formed by single-sided welding and double-sided welding to ensure that the product will never leak oil.

Packing and Shipping

Payment:
We usually use TT.
TT 30% deposit  before production and balance 70% before delivery or against B/L copy if see shipment.
100% L/C at sight if you purchase in large quantities. 

Shipping: 
If the quantity of order is not very big, we could send them to you by express delivery, such as TNT, DHL, UPS or EMS etc.
If the order is large, we usually ship from HangZhou Port, China.

Our company wants to establish a long-term friendly business relationship with your respected company. If you are interested in our products, please contact us directly. We look forward to your inquiry. 

Contact person: Xinzhao                           

Worm Shafts and Gearboxes

If you have a gearbox, you may be wondering what the best Worm Shaft is for your application. There are several things to consider, including the Concave shape, Number of threads, and Lubrication. This article will explain each factor and help you choose the right Worm Shaft for your gearbox. There are many options available on the market, so don't hesitate to shop around. If you are new to the world of gearboxes, read on to learn more about this popular type of gearbox.
worm shaft

Concave shape

The geometry of a worm gear varies considerably depending on its manufacturer and its intended use. Early worms had a basic profile that resembled a screw thread and could be chased on a lathe. Later, tools with a straight sided g-angle were developed to produce threads that were parallel to the worm's axis. Grinding was also developed to improve the finish of worm threads and minimize distortions that occur with hardening.
To select a worm with the proper geometry, the diameter of the worm gear must be in the same unit as the worm's shaft. Once the basic profile of the worm gear is determined, the worm gear teeth can be specified. The calculation also involves an angle for the worm shaft to prevent it from overheating. The angle of the worm shaft should be as close to the vertical axis as possible.
Double-enveloping worm gears, on the other hand, do not have a throat around the worm. They are helical gears with a straight worm shaft. Since the teeth of the worm are in contact with each other, they produce significant friction. Unlike double-enveloping worm gears, non-throated worm gears are more compact and can handle smaller loads. They are also easy to manufacture.
The worm gears of different manufacturers offer many advantages. For instance, worm gears are 1 of the most efficient ways to increase torque, while lower-quality materials like bronze are difficult to lubricate. Worm gears also have a low failure rate because they allow for considerable leeway in the design process. Despite the differences between the 2 standards, the overall performance of a worm gear system is the same.
The cone-shaped worm is another type. This is a technological scheme that combines a straight worm shaft with a concave arc. The concave arc is also a useful utility model. Worms with this shape have more than 3 contacts at the same time, which means they can reduce a large diameter without excessive wear. It is also a relatively low-cost model.
worm shaft

Thread pattern

A good worm gear requires a perfect thread pattern. There are a few key parameters that determine how good a thread pattern is. Firstly, the threading pattern must be ACME-threaded. If this is not possible, the thread must be made with straight sides. Then, the linear pitch of the "worm" must be the same as the circular pitch of the corresponding worm wheel. In simple terms, this means the pitch of the "worm" is the same as the circular pitch of the worm wheel. A quick-change gearbox is usually used with this type of worm gear. Alternatively, lead-screw change gears are used instead of a quick-change gear box. The pitch of a worm gear equals the helix angle of a screw.
A worm gear's axial pitch must match the circular pitch of a gear with a higher axial pitch. The circular pitch is the distance between the points of teeth on the worm, while the axial pitch is the distance between the worm's teeth. Another factor is the worm's lead angle. The angle between the pitch cylinder and worm shaft is called its lead angle, and the higher the lead angle, the greater the efficiency of a gear.
Worm gear tooth geometry varies depending on the manufacturer and intended use. In early worms, threading resembled the thread on a screw, and was easily chased using a lathe. Later, grinding improved worm thread finishes and minimized distortions from hardening. As a result, today, most worm gears have a thread pattern corresponding to their size. When selecting a worm gear, make sure to check for the number of threads before purchasing it.
A worm gear's threading is crucial in its operation. Worm teeth are typically cylindrical, and are arranged in a pattern similar to screw or nut threads. Worm teeth are often formed on an axis of perpendicular compared to their parallel counterparts. Because of this, they have greater torque than their spur gear counterparts. Moreover, the gearing has a low output speed and high torque.

Number of threads

Different types of worm gears use different numbers of threads on their planetary gears. A single threaded worm gear should not be used with a double-threaded worm. A single-threaded worm gear should be used with a single-threaded worm. Single-threaded worms are more effective for speed reduction than double-threaded ones.
The number of threads on a worm's shaft is a ratio that compares the pitch diameter and number of teeth. In general, worms have 1,2,4 threads, but some have three, five, or six. Counting thread starts can help you determine the number of threads on a worm. A single-threaded worm has fewer threads than a multiple-threaded worm, but a multi-threaded worm will have more threads than a mono-threaded planetary gear.
To measure the number of threads on a worm shaft, a small fixture with 2 ground faces is used. The worm must be removed from its housing so that the finished thread area can be inspected. After identifying the number of threads, simple measurements of the worm's outside diameter and thread depth are taken. Once the worm has been accounted for, a cast of the tooth space is made using epoxy material. The casting is moulded between the 2 tooth flanks. The V-block fixture rests against the outside diameter of the worm.
The circular pitch of a worm and its axial pitch must match the circular pitch of a larger gear. The axial pitch of a worm is the distance between the points of the teeth on a worm's pitch diameter. The lead of a thread is the distance a thread travels in 1 revolution. The lead angle is the tangent to the helix of a thread on a cylinder.
The worm gear's speed transmission ratio is based on the number of threads. A worm gear with a high ratio can be easily reduced in 1 step by using a set of worm gears. However, a multi-thread worm will have more than 2 threads. The worm gear is also more efficient than single-threaded gears. And a worm gear with a high ratio will allow the motor to be used in a variety of applications.
worm shaft

Lubrication

The lubrication of a worm gear is particularly challenging, due to its friction and high sliding contact force. Fortunately, there are several options for lubricants, such as compounded oils. Compounded oils are mineral-based lubricants formulated with 10 percent or more fatty acid, rust and oxidation inhibitors, and other additives. This combination results in improved lubricity, reduced friction, and lower sliding wear.
When choosing a lubricant for a worm shaft, make sure the product's viscosity is right for the type of gearing used. A low viscosity will make the gearbox difficult to actuate and rotate. Worm gears also undergo a greater sliding motion than rolling motion, so grease must be able to migrate evenly throughout the gearbox. Repeated sliding motions will push the grease away from the contact zone.
Another consideration is the backlash of the gears. Worm gears have high gear ratios, sometimes 300:1. This is important for power applications, but is at the same time inefficient. Worm gears can generate heat during the sliding motion, so a high-quality lubricant is essential. This type of lubricant will reduce heat and ensure optimal performance. The following tips will help you choose the right lubricant for your worm gear.
In low-speed applications, a grease lubricant may be sufficient. In higher-speed applications, it's best to apply a synthetic lubricant to prevent premature failure and tooth wear. In both cases, lubricant choice depends on the tangential and rotational speed. It is important to follow manufacturer's guidelines regarding the choice of lubricant. But remember that lubricant choice is not an easy task.

China OEM Back Head Main Body Sb40 Sb43 Sb45 Sb50 Hydraulic Breaker Parts Front Head Cylinder     with Great qualityChina OEM Back Head Main Body Sb40 Sb43 Sb45 Sb50 Hydraulic Breaker Parts Front Head Cylinder     with Great quality

China Hot selling Hydraulic Breaker Spare Parts Front Head Back Head and Cylinder with high quality

Product Description

****OUR FACTORY

***we are a factory in HangZhou city,ZheJiang province,China

specialized in manufacturing hydraulic breaker ,quick hitch ,ripper ,etc for excavator attachment .

OUR FACTORY IN HangZhou CITY,ZheJiang PROVINCE ,CHINA
OUR PRODUCT SPECAILIZED IN MANUFACTURE HYDRAULIC HAMMER
MOQ 1 SET
OEM YES.BECAUSE WE ARE A FACTORY
COLOR ANY COLOR COULD DO FOR YOU
PAYMENT 30% DEPOSIT ,BALANCE BEFORE SHIPPING ,T/T OR L/C
DELIVERY DATE 1-50 SET 1-25DAYS.
SHIPPING BY SEA O BY AIR

 

* HangZhou Factory Direct Price
* Small order is welcome, MOQ 1 set
* Nice quality, 1 year warranty
* Chisel diameter from 35-210mm
* Breaker suit any brand 0.5-70 ton excavator
* Fit to machine as below:

YTCT HYDRAULIC BREAKER HAMMER:

MODE NUMBER CHISEL DIAMETER SUIT EXCAVATOR (WEIGHT) BRAND OF EXCAVATOR HYDRAULIC OIL FLOW HYDRAULIC PRESSURE BLOW FREQUENCY MAIN BODY WEIGHT HOSE DIAMETER ACCUMALATOR PRESSURE
YTCT MM TON   L/MIN KG/CM2 BMP KG INCH KG/CM2
YTCT 35 0.5-0.8 ANY BRAND 10--20 90-120 800-1400 40 1/2 /
YTCT10 40 0.8-2.5 15-25 90-120 800-1400 53 1/2 /
YTCT20 45 1.2-3.0 20-30 90-120 700-1200 71 1/2 /
YTCT30 53 2.5-4.5 25-50 90-120 600-1100 89 1/2 /
YTCT40 68 4--7 40-70 110-140 500-900 156 1/2 /
YTCT43 75 6--9 50-90 120-150 400-800 214 1/2 /
YTCT45 85 7--14 60-100 130-160 400-800 282 1/2 /
YTCT50 100 10--15 80-110 150-170 350-700 479 3/4 /
YTCT70 135 16-25 130-150 160-180 400-800 850 1 /
YTCT81 140 18-26 120-180 160-180 350-500 920 1 /
YTCT81A 140 18-26 120-180 160-180 350-500 956 1 60
YTCT100 150 27-35 150-190 160-180 350-700 2218 1 60
YTCT121 155 28-35 180-240 160-180 300-450 2577 1 60
YTCT131 165 30-40 200-260 160-180 250-400 1442 1 60
YTCT140 165 30-40 200-270 160-180 250-380 1590 1 60
YTCT151 175 35-40 210-290 160-180 200-350 1925 5/4 60
YTCT151L 175 35-45 220-270 200-240 200-300 1933 5/4 60
YTCT185 185 40-55 220-270 180-220 250-320 2295 5/4 60
YTCT190 190 45-60 220-290 180-220 180-200 2526 5/4 60
YTCT195 195 45-60 220-290 180-220 180-200 2600 5/4 60

ALL THE PRICE WITH SPARE PARTS AS BELOW:

1.all the price with wooden box pacakage .
2.all the price with the standard spare parts.
** -----2 chisels
** -----2 oil tube
** -----1 N2 gas bottle.
** -----1 tool box
** -----1 N2 pressure gauge

PACKING AND SHIPPING

1.Inner is stretch film, outside is export plywood case or as customer's request

2.Delivery time:Usually 3-7days (1-5sets) after down payment.

3..We can arrange CZPT or air transportation according to your request from any port of China.

HOW TO CHOOSE OUR BREAKER ?

1. PLEASE LET US KNOW YOUR EXCAVATOR MODEL NUMBER OR WEIGHT OF MACHINE.

2.PLEASE LET US KNOW WHAT COLOR DO YOU NEED FOR BREAKER .

3.PLEASE CHECK THE ABCDE SIZE FOR US ,ARM EAR WIDTH ,PIN DIAMETER AND PIN CENTER TO PIN CENTER SIZE .

4.CHOOSE WHAT TYPE OF HYDRAULIC BREAKRE DO YOU NEED ,THANKS.

NEED FREE CATALOG OR MORE PRICE,SEND ME INQUIRY AS BELOW.

MISS EVA WILL REPLY SOON,THANKS.

 

How Metal Fabrication Benefits Agricultural Parts

agricultural parts

If you own an agricultural farm, you probably have a variety of different kinds of agricultural parts. These include tractors, hand tools, and other types of farm implements. Here, you'll learn how to identify different parts and the importance of knowing what they do. Then, you can order them online to have them shipped directly to you. You can also contact different agricultural equipment dealers to find out where to buy agricultural parts. Regardless of where you get them, they'll be worth the investment.
agriculturalparts

Metal fabricated agricultural parts

Regardless of the industry, metal fabricated agricultural parts can benefit a farm. For starters, metal fabricated parts are easier to replace than alternatives. Because metal is stronger than plastic, these parts can be made lighter. This means faster equipment movement and increased productivity. Metal can also be easily customized, allowing for a custom-made product. The benefits of metal fabrication extend far beyond the agricultural industry. Listed below are several of the benefits of using metal fabricated parts.
Agricultural equipment is exposed to harsh weather conditions. This is why it is imperative that metal fabricated agricultural parts are made with durable materials. Additionally, metal fabricated parts have a lower chance of corroding, which helps keep equipment running more efficiently. With such a long list of benefits, it's easy to see why metal fabricated parts are so popular with farmers. And if your company needs agricultural equipment parts that can withstand the elements, you can depend on Hynes Industries.
Agricultural equipment requires metal parts that can withstand the rigorous workloads. As a trusted vendor, Evan's Manufacturing provides comprehensive metal fabrication services for agricultural equipment. With our advanced laser cutting services, you can rest assured that your metal parts are in good hands. You'll be able to make adjustments without affecting the integrity of the metal. And thanks to our streamlined process, the quality of your fabricated parts is unrivaled.
Whether you need a custom fitout for a new piece of farm equipment, or a new design for an existing piece, metal fabrication can help. Custom fitouts not only improve the comfort of the operator, but also increase the durability of your farm machinery. Almost every type of metal fabrication process is used in the agricultural industry. These include brazing, welding, soldering, drilling, milling, and laser engraving.
As the manufacturing process of agricultural machinery becomes increasingly automated, sheet metal fabrication has become an important part of the production process. This process allows for more precise and accurate processing of holes of various shapes and sizes, and the cost of production is lowered significantly. Additionally, because of its precision and stability, sheet metal fabrication is perfect for farming. Moreover, it's easy to teach and maintain automated processes. With these machines, farmers can make small batches easily, improving the efficiency of agricultural production.
agriculturalparts

Agricultural machinery manufacturers

Agricultural machinery is a highly technological industry with a large market for OEM parts. The demand for agricultural equipment is expected to reach $118.2 billion by 2025, which is higher than the previous forecast. Today, modern tech developments have increased the productivity and profitability of farms, making it more profitable to use farm equipment. Moreover, the availability of OEM parts is a key driving factor for the market growth. The agricultural equipment market will see continued growth as manufacturers focus on safety, quality, and consistent improvement of their products.
AGCO Corporation is an agricultural machinery manufacturer based in Duluth, Georgia. It was formed through a merger with Allis-Chalmers in 1990. The company's growth has been achieved through numerous acquisitions in farm machinery. It first acquired the Hesston forage and hay line from Fiat, which included a 50% share in a manufacturing joint venture with Case IH. Moreover, it acquired the White tractor business from Allied Products to expand its dealer network.
Among the major factors contributing to the supply chain breakdown for farm equipment manufacturers is the outbreak of COVID-19. The pandemic has affected the supply chain in several ways, including reducing the availability of raw materials and component parts. It also has affected the labor force by causing temporary layoffs and illness. Furthermore, the shortage of steel is causing manufacturers to struggle to meet demand. As a result, the company has to delay shipments to meet customer demand.
In addition to the above factors, the rising cost of labor is another factor driving equipment sales. Using auto-guidance systems to match the yield of a crop is an effective way to maximize yield while minimizing environmental impact. Another major factor driving agricultural equipment sales is the increasing cost of agricultural labor across regions. This pay differential between industrial workers and those in the agricultural sector is 1 of the most common secular drivers for demand for agricultural equipment.
A large proportion of agricultural equipment is oversized for economic reasons. For instance, a combine can do 3 different processes at once. It can also travel across several states or even countries. The need for reliable transportation companies is another critical factor in the industry. The majority of companies in this industry are family-owned and operated. A good transportation network is essential to keep equipment on the road. This is a major challenge for the industry.
The European Union accounts for a large proportion of agricultural machinery manufacturing, with total output of 28 billion euros (2014). The top 3 countries for production are Germany, Italy, and France, with each country accounting for around 17 per cent of the global total. The majority of leading international manufacturers maintain several production sites across the continent. The products produced at these facilities are typically for high-end customers. They can also be purchased from a variety of independent sources.
agriculturalparts

Agricultural equipment dealers

Agricultural equipment dealerships are facing a changing landscape. Today's consumers expect businesses to be online 24/7, have faster response times, and allow them to make payments more conveniently. To keep up with these expectations, more dealers are making the switch to mobile apps. These apps simplify all areas of business, from sales to service, and allow technicians to receive work orders directly on their mobile devices. In addition, the growth of ag equipment manufacturers is fueling the trend of consolidation among ag equipment dealers.
Video marketing is especially useful for agricultural equipment dealers. Agricultural equipment dealers can utilize video marketing from firms such as Kirkpatrick Creative. Unlike text, video allows marketers to connect emotionally with their customers, by showing them a face. It is much more difficult to establish this connection through text, so video is a great way to reach potential customers. If a customer is satisfied with the process, they are more likely to buy from them again.
To succeed in sales of agricultural equipment, candidates should possess a combination of equipment knowledge, communication skills, and tenacity. Sales compensation packages for this industry are heavily based on commissions, so new salespeople should be prepared to work without a guaranteed monthly check. Agricultural equipment dealers should be ready for this kind of change in the coming years and prepare their sales funnels to make the transition. In addition, they should make sure that their phone numbers are prominently displayed.
The laws governing agricultural equipment dealers vary from state to state. These laws protect farm equipment dealers by outlining their rights as a supplier and a manufacturer. While these laws may have some commonalities, they do have some differences, which makes them essential to fully understand. Several procedures which are legal in 1 state may not be allowed in another. For this reason, it is vital that the dealer understand the laws of his state and be familiar with the relevant legislation.
The shortage of labor in the agriculture sector is a major challenge for many growers. But the shortage of labor could spur sales of robotics and automation equipment that simplify the farming process. With the right tools, a farm can run more efficiently and reduce its worker headcount. Therefore, the lack of labor will continue to be a major problem for agricultural equipment dealers. With this in mind, it is imperative to choose the right dealer for the job.
The influx of new equipment has made it difficult for agricultural equipment manufacturers to meet demand. Many companies have struggled to get implements to dealerships on time, making the overall situation even more complicated. Agricultural equipment dealers have to wait weeks or even months for their new machines to be delivered to farmers. A tractor from John Deere, for instance, can take 5 or 6 weeks to arrive in a dealership. It can now take 18 to 22 weeks, depending on the size of the order.

China Hot selling Hydraulic Breaker Spare Parts Front Head Back Head and Cylinder     with high qualityChina Hot selling Hydraulic Breaker Spare Parts Front Head Back Head and Cylinder     with high quality

China supplier Hydraulic Breaker Front Head Back Head Hb20g Hb30g Hb40g Cylinder near me factory

Product Description

****OUR FACTORY

***we are a factory in HangZhou city,ZheJiang province,China

specialized in manufacturing hydraulic breaker ,quick hitch ,ripper ,etc for excavator attachment .

OUR FACTORY IN HangZhou CITY,ZheJiang PROVINCE ,CHINA
OUR PRODUCT SPECAILIZED IN MANUFACTURE HYDRAULIC HAMMER
MOQ 1 SET
OEM YES.BECAUSE WE ARE A FACTORY
COLOR ANY COLOR COULD DO FOR YOU
PAYMENT 30% DEPOSIT ,BALANCE BEFORE SHIPPING ,T/T OR L/C
DELIVERY DATE 1-50 SET 1-25DAYS.
SHIPPING BY SEA O BY AIR

 

* HangZhou Factory Direct Price
* Small order is welcome, MOQ 1 set
* Nice quality, 1 year warranty
* Chisel diameter from 35-210mm
* Breaker suit any brand 0.5-70 ton excavator
* Fit to machine as below:

YTCT HYDRAULIC BREAKER HAMMER:

MODE NUMBER CHISEL DIAMETER SUIT EXCAVATOR (WEIGHT) BRAND OF EXCAVATOR HYDRAULIC OIL FLOW HYDRAULIC PRESSURE BLOW FREQUENCY MAIN BODY WEIGHT HOSE DIAMETER ACCUMALATOR PRESSURE
YTCT MM TON   L/MIN KG/CM2 BMP KG INCH KG/CM2
YTCT 35 0.5-0.8 ANY BRAND 10--20 90-120 800-1400 40 1/2 /
YTCT10 40 0.8-2.5 15-25 90-120 800-1400 53 1/2 /
YTCT20 45 1.2-3.0 20-30 90-120 700-1200 71 1/2 /
YTCT30 53 2.5-4.5 25-50 90-120 600-1100 89 1/2 /
YTCT40 68 4--7 40-70 110-140 500-900 156 1/2 /
YTCT43 75 6--9 50-90 120-150 400-800 214 1/2 /
YTCT45 85 7--14 60-100 130-160 400-800 282 1/2 /
YTCT50 100 10--15 80-110 150-170 350-700 479 3/4 /
YTCT70 135 16-25 130-150 160-180 400-800 850 1 /
YTCT81 140 18-26 120-180 160-180 350-500 920 1 /
YTCT81A 140 18-26 120-180 160-180 350-500 956 1 60
YTCT100 150 27-35 150-190 160-180 350-700 2218 1 60
YTCT121 155 28-35 180-240 160-180 300-450 2577 1 60
YTCT131 165 30-40 200-260 160-180 250-400 1442 1 60
YTCT140 165 30-40 200-270 160-180 250-380 1590 1 60
YTCT151 175 35-40 210-290 160-180 200-350 1925 5/4 60
YTCT151L 175 35-45 220-270 200-240 200-300 1933 5/4 60
YTCT185 185 40-55 220-270 180-220 250-320 2295 5/4 60
YTCT190 190 45-60 220-290 180-220 180-200 2526 5/4 60
YTCT195 195 45-60 220-290 180-220 180-200 2600 5/4 60

ALL THE PRICE WITH SPARE PARTS AS BELOW:

1.all the price with wooden box pacakage .
2.all the price with the standard spare parts.
** -----2 chisels
** -----2 oil tube
** -----1 N2 gas bottle.
** -----1 tool box
** -----1 N2 pressure gauge

PACKING AND SHIPPING

1.Inner is stretch film, outside is export plywood case or as customer's request

2.Delivery time:Usually 3-7days (1-5sets) after down payment.

3..We can arrange CZPT or air transportation according to your request from any port of China.

HOW TO CHOOSE OUR BREAKER ?

1. PLEASE LET US KNOW YOUR EXCAVATOR MODEL NUMBER OR WEIGHT OF MACHINE.

2.PLEASE LET US KNOW WHAT COLOR DO YOU NEED FOR BREAKER .

3.PLEASE CHECK THE ABCDE SIZE FOR US ,ARM EAR WIDTH ,PIN DIAMETER AND PIN CENTER TO PIN CENTER SIZE .

4.CHOOSE WHAT TYPE OF HYDRAULIC BREAKRE DO YOU NEED ,THANKS.

NEED FREE CATALOG OR MORE PRICE,SEND ME INQUIRY AS BELOW.

MISS EVA WILL REPLY SOON,THANKS.

 

What You Should Know About Axle Shafts

There are several things you should know about axle shafts. These include what materials they're made of, how they're constructed, and the signs of wear and tear. Read on to learn more about axle shafts and how to properly maintain them. Axle shafts are a crucial part of any vehicle. But how can you tell if 1 is worn out? Here are some tips that can help you determine whether it's time to replace it.

Materials used for axle shafts

When it comes to materials used in axle shafts, there are 2 common types of materials. One is carbon fiber, which is relatively uncommon for linear applications. Carbon fiber shafting is produced by CZPT(r). The main benefit of carbon fiber shafting is its ultra-low weight. A carbon fiber shaft of 20mm diameter weighs just 0.17kg, as opposed to 2.46kg for a steel shaft of the same size.
The other type of material used in axle shafts is forged steel. This material is strong, but it is difficult to machine. The resulting material has residual stresses, voids, and hard spots that make it unsuitable for some applications. A forged steel shaft will not be able to be refinished to its original dimensions. In such cases, the shaft must be machined down to reduce the material's hardness.
Alternatively, you can choose to purchase a through-hardened shaft. These types of axle shafts are suitable for light cars and those that use single bearings on their hub. However, the increased diameter of the axle shaft will result in less resistance to shock loads and torsional forces. For these applications, it is best to use medium-carbon alloy steel (MCA), which contains nickel and chromium. In addition, you may also need to jack up your vehicle to replace the axle shaft.
The spline features of the axle shaft must mate with the spline feature on the axle assembly. The spline feature has a slight curve that optimizes contact surface area and distribution of load. The process involves hobbing and rolling, and it requires special tooling to form this profile. However, it is important to note that an axle shaft with a cut spline will have a 30% smaller diameter than the corresponding 1 with an involute profile.
Another common material is the 300M alloy, which is a modified 4340 chromoly. This alloy provides additional strength, but is more prone to cracking. For this reason, this alloy isn't suited for street-driven vehicles. Axle shafts made from this alloy are magnaflushed to detect cracks before they cause catastrophic failure. This heat treatment is not as effective as the other materials, but it is still a good choice for axle shafts.
Driveshaft

Construction

There are 3 basic types of axle shafts: fully floating, three-quarter floating, and semi-floating. Depending on how the shaft is used, the axles can be either stationary or fully floating. Fully floating axle shafts are most common, but there are exceptions. Axle shafts may also be floating or stationary, or they may be fixed. When they are stationary, they are known as non-floating axles.
Different alloys have different properties. High-carbon steels are harder than low-carbon steels, while medium-carbon steels are less ductile. Medium-carbon steel is often used in axle shafts. Some shafts contain additional metals, including silicon, nickel, and copper, for case hardening. High-carbon steels are preferred over low-carbon steels. Axle shafts with high carbon content often have better heat-treatability than OE ones.
A semi-floating axle shaft has a single bearing between the hub and casing, relieving the main shear stress on the shaft but must still withstand other stresses. A half shaft needs to withstand bending loads from side thrust during cornering while transmitting driving torque. A three-quarter floating axle shaft is typically fitted to commercial vehicles that are more capable of handling higher axle loads and torque. However, it is possible to replace or upgrade the axle shaft with a replacement axle shaft, but this will require jacking the vehicle and removing the studs.
A half-floating axle is an alternative to a fixed-length rear axle. This axle design is ideal for mid-size trucks. It supports the weight of the mid-size truck and may support mid-size trucks with high towing capacities. The axle housing supports the inner end of the axle and also takes up the end thrust from the vehicle's tires. A three-quarter floating axle, on the other hand, is a complex type that is not as simple as a semi-floating axle.
Axle shafts are heavy-duty load-bearing components that transmit rotational force from the rear differential gearbox to the rear wheels. The half shaft and the axle casing support the road wheel. Below is a diagram of different forces that can occur in the axle assembly depending on operating conditions. The total weight of the vehicle's rear can exert a bending action on the half shaft, and the overhanging section of the shaft can be subject to a shearing force.
Driveshaft

Symptoms of wear out

The constant velocity axle, also called the half shaft, transmits power from the transmission to the wheels, allowing the vehicle to move forward. When it fails, it can result in many problems. Here are 4 common symptoms of a bad CV axle:
Bad vibrations: If you notice any sort of abnormal vibration while driving, this may be a sign of axle damage. Vibrations may accompany a strange noise coming from under the vehicle. You may also notice tire wobble. It is important to repair this problem as it could be harmful to your car's handling and comfort. A damaged axle is generally accompanied by other problems, including a weak braking response.
A creaking or popping sound: If you hear this noise when turning your vehicle, you probably have a worn out CV axle. When the CV joints lose their balance, the driveshaft is no longer supported by the U-joints. This can cause a lot of vibrations, which can reduce your vehicle's comfort and safety. Fortunately, there are easy ways to check for worn CV axles.
CV joints: A CV joint is located at each end of the axle shaft. In front-wheel drive vehicles, there are 2 CV joints, 1 on each axle. The outer CV joint connects the axle shaft to the wheel and experiences more movement. In fact, the CV joints are only as good as the boot. The most common symptoms of a failed CV joint include clicking and popping noises while turning or when accelerating.
CV joint: Oftentimes, CV joints wear out half of the axle shaft. While repairing a CV joint is a viable repair, it is more expensive than replacing the axle. In most cases, you should replace the CV joint. Replacement will save you time and money. ACV joints are a vital part of your vehicle's drivetrain. Even if they are worn, they should be checked if they are loose.
Unresponsive acceleration: The vehicle may be jerky, shuddering, or slipping. This could be caused by a bent axle. The problem may be a loose U-joint or center bearing, and you should have your vehicle inspected immediately by a qualified mechanic. If you notice jerkiness, have a mechanic check the CV joints and other components of the vehicle. If these components are not working properly, the vehicle may be dangerous.
Driveshaft

Maintenance

There are several points of concern regarding the maintenance of axle shafts. It is imperative to check the axle for any damage and to lubricate it. If it is clean, it may be lubricated and is working properly. If not, it will require replacement. The CV boots need to be replaced. A broken axle shaft can result in catastrophic damage to the transmission or even cause an accident. Fortunately, there are several simple ways to maintain the axle shaft.
In addition to oil changes, it is important to check the differential lube level. Some differentials need cleaning or repacking every so often. CZPT Moreno Valley, CA technicians know how to inspect and maintain axles, and they can help you determine if a problem is affecting your vehicle's performance. Some common signs of axle problems include excessive vibrations, clunking, and a high-pitched howling noise.
If you've noticed any of these warning signs, contact your vehicle's manufacturer. Most manufacturers offer service for their axles. If it's too rusted or damaged, they'll replace it for you for free. If you're in doubt, you can take it to a service center for a repair. They'll be happy to assist you in any aspect of your vehicle's maintenance. It's never too early to begin.
CZPT Moreno Valley, CA technicians are well-versed in the repair of axles and differentials. The CV joint, which connects the car's transmission to the rear wheels, is responsible for transferring the power from the engine to the wheels. Aside from the CV joint, there are also protective boots on both ends of the axle shaft. The protective boots can tear with age or use. When they tear, they allow grease and debris to escape and get into the joint.
While the CV joint is the most obvious place to replace it, this isn't a time to ignore this important component. Taking care of the CV joint will protect your car from costly breakdowns at the track. While servicing half shafts can help prevent costly replacement of CV joints, it's best to do it once a season or halfway through the season. ACV joints are essential for your car's safety and function.

China supplier Hydraulic Breaker Front Head Back Head Hb20g Hb30g Hb40g Cylinder     near me factory China supplier Hydraulic Breaker Front Head Back Head Hb20g Hb30g Hb40g Cylinder     near me factory

China Custom Cylinder Breaker Excavator Hydraulic Rock Breaker Cylinder for Hammer with Great quality

Product Description

Overview

 

Quick Details

Showroom Location:

None

Video outgoing-inspection:

Provided

Machinery Test Report:

Provided

Marketing Type:

New Product 2571

Place of Origin:

ZheJiang , China

Brand Name:

CHOM

Model Number:

CHOM

Warranty:

1 Year, 12 months

Condition:

NEW

Applicable Industries:

Farms, Machinery Repair Shops, Energy & Mining, Construction works 

Weight:

2577KG

Suitable Excavator(ton):

0.5-50

Core Components:

pipe

Hose diameter:

1/1/4 inch

Suitable excavator:

27-36 ton

Chisel diameter:

155mm

Certification:

ce, CE &ISO9001

Type:

side/top/box

OEM:

acceptable

Color:

red/yellow/customized

IMPACT RATE:

300-450bmp

After Warranty Service:

Video technical support, Online support, Spare parts

Local Service Location:

None

After-sales Service Provided:

Video technical support, Online support, Free spare parts

Supply Ability

Supply Ability
500 Set/Sets per Month

Packaging & Delivery

Packaging Details
export wooden case, non-fumigation
Port
HangZhou

WE are the real manufacturer in China. All breakers are produced, assmebled and backed by DEHN!

To get your order and satisfaction, we offer you:
1. factory direct price
2. good quality
3. support 7 days refund money
4. small order is welcomed
5. OEM customized
6. longer warranty
7. 24 hours on line to offer you professional service
8. Trade assurance for shipment and payment as we are Alibaba VIP and gold supplier.

 

Model

SB121=DEHN1550

Total Weight(side/top/box)

kg

2577/2745/2968

Length(side/top/weight)

mm

2776/3102/3075

Working Flow Rate

liter /min

180-240

Oil Relief Pressure

kg/cm2

170-200

Working Pressure

kg/cm2

150-170

Striking Frequency

bpm

300-450

Chisel Diameter

mm

¢155

Oil Pipe Nominal Diameter

inch

1/1/4

Chisel Weight

kg

190

Applicable Excavator Weight

ton

28-35

Suitable Bucket Capacity

m3

1.1-1.4

Payment Term

TT/LC/Westunion

Standard Parts: Two chisels, 2 hoses, 1 set of N2 charging kit with N2 bottle and pressure gauge, 1 set of spare seal kit,one tool box with necessary maintenance tools and operation manual as well.

Advantages:

1.Select raw material - high quality heavy duty wear resistant alloy steel.

2.Advanced manufacturing facilities, introduced from South Korea.

3.Ten years of experiences in research and development .

4.Powerful impact blow. Compared with other brand's products, JMB series Hydraulic Breakers has more powerful stroke and reliableperformances.

5.Easy maintenance.

6.Long lifetime.

7.Convenient A/S service.

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let's explore these types in more detail. What type of screw shaft do you need? Which 1 is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
screwshaft

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8" to 6". The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire's leading and trailing ends are anchored to the shaft by means appropriate to the shaft's composition. The screw is preferably made of stainless steel.
When selecting a lead screw, 1 should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw's minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw's performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are 2 major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth's screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children's fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically 1 millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect 2 elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor "s0". This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China Custom Cylinder Breaker Excavator Hydraulic Rock Breaker Cylinder for Hammer     with Great qualityChina Custom Cylinder Breaker Excavator Hydraulic Rock Breaker Cylinder for Hammer     with Great quality

China Good quality Hydraulic Breaker Spare Parts Front Head Back Head and Cylinder wholesaler

Product Description

 

HangZhou XIHU (WEST LAKE) DIS. GET MACHINERY LTD.

HangZhou XIHU (WEST LAKE) DIS. GET MACHINERY LTD locates in HangZhou-The Internation CZPT city,the economic zone of ZHangZhoug Province with beautiful environment,abundant resources and convenient transportation. Superior geography position gives the great advantages to the company's developments.

We are specializing in manufacturing the high quality hydraulic breaker chisels for all models hydraulic breakers/hammers ( The chisel diameter can be from 45mm-300mm),we also supply all high quality hydraulic breakers/hammers and the spare parts,such as Hydraulic breaker pistons,bushes,pins,bolts,front heads and back heads,seal kits,diaphragms etc.We have advanced CNC Equipments and Test devices. Products from raw material-machining-heat treatment-summarizing testing to finished standard packing,each procedure has the strict requirements with scientific and reasonable production management and quality control system. and we are adopting the unique heat treatment technology.To ensure that we can provides the high quality products and services all the time.We are cooperating with many famous corporations at home and abroad.We export to the Middle East countries, European countries,America,Southeast Asia countries and other countries and regions regularly. 

We focus on the high quality as the enterprise lifeblood,the integrity-based as the enterprise objective,and take customers satisfaction as the goal.Sincerely look forward to cooperating with all friends for CZPT business and common developments.

Ball Screws - Dimensions, Applications, and Benefits

Ball screws are popular, lightweight, precision mechanical components. They are commonly used in machinery, gears, and knurled objects. These screw-like parts can be easily maintained and lubricated using oil. This article discusses their dimensions, applications, and benefits. The following sections provide additional information to help you select the right ball screw for your needs. We'll discuss some of the important characteristics of ball screws and what makes them so useful.
air-compressor

Preloading

A key problem with nut-to-ball screw backlash is the ability of the nut to move freely on the threads of the ball screw. To solve this problem, a patented solution was developed. The patent, 4,557,156, describes an innovative method for preloading ball screws and nuts. By applying a preloading nut, the threads of the ball screw are prevented from moving back and forth with the nut.
A mechanical design that involves axial play involves a lot of mass, inertia, and complexity. These characteristics lead to wear and rust problems. Preloading ball screws using a dynamic system reduces mechanical complexity by allowing preload to be adjusted while the mechanism is running. This also reduces the number of mechanical parts and simplifies manufacturing. Thus, the preloading method of the present invention is advantageous.
The servo motors used in the system monitor the output torque and adjust the power to 1 motor in a dynamic way, thus creating a torque differential between the balls. This torque differential in turn creates a preload force between the ball nuts. The servo motors' output torque is controlled in this manner, and the machine's backlash clearance can be precisely controlled. Hence, the machine can perform multiple tasks with increased precision.
Several prior art methods for preloading ball screws are described in detail in FIG. 3. The helical thread grooves of the ball screw 26 and the nut 24 define a pathway for roller balls to travel along. The stylized broken line indicates the general position of the axis of the ball roller screw 26. The corresponding ball screws are used in a number of applications. This technique may be used to manufacture custom-sized screws.

Lubrication

Ball screws are mechanical elements that roll balls through a groove. Improper lubrication can reduce the life of these screw elements. Improper lubrication can lead to shaft damage, malfunction, and decreased performance. This article discusses the importance of proper lubrication and how to do it. You can learn how to properly lubricate ball screws in the following paragraphs. Here are some tips to ensure long-term performance and safety of ball screws.
The first thing you should do is determine the type of lubricant you'll be using. Oils are preferred because they tend to remain inside the ball nut, and grease can build up in it. Oils also tend to have better anti-corrosion properties than grease. However, grease is more likely to be clogged with debris than oils. So, before you choose the lubricant that's right for your screw, make sure you wash it off.
The oil used in ball screw lubrication must be applied at a controlled rate. It can prevent metal-on-metal contact and clean out contaminants as it passes through the ball nut. However, oil as a lubricant is expensive and can contaminate the process if it mixes with the cutting fluid. Grease, on the other hand, is inexpensive, requires fewer applications, and does not contaminate process fluids.
If you use a synthetic oil for lubrication, make sure to choose a viscosity that is appropriate for the operating temperature. Oil viscosity can increase the temperature of the ball screw assembly, and excessive oil can reduce its life. A correct amount of oil will reduce the temperature of the ball screw assembly, while too little will increase friction and wear. Use the following guidelines to determine the right amount of oil for your screw.
air-compressor

Dimensions

Dimensions of ball screws are a very important aspect to consider when determining the best type for your application. Technical acceptance conditions for ball screws specify the allowed deviations during acceptance tests. The tolerance class can also change, depending on the needs of a specific application. The following table lists the most important tolerance values for the full range of screw lengths. This table is a helpful guide when looking for a specific screw. The table below lists the dimensions of common ball screws.
The axial load applied to a ball screw is 0.5 x Fpr / 2Fpr. The minimum screw diameter is known as the root diameter. The axial load causes the screw shaft to deform in a certain way (DL1 and DL2). The elastic deflection induced by the load on a ball screw is called its rigidity. This rigidity is important for calculating sizing parameters for a ball screw.
The preload value of the ball screw affects the dynamic load capacity. A preload of 10 percent is considered adequate, while a value greater than this may compromise the screw's durability. In general, a high preload value will result in a lower dynamic load capacity and greater wear. However, the preload value must be calculated with the relevant screw parameters. This is because a high preload value reduces the screw's durability.
To ensure that your screw meets the specified parameters, the dynamic load capacity must be calculated. This is the amount of force a ball screw will withstand under a specified load. This calculation also includes strength checks. If you are using a ball screw for applications that need extra strength, it may require a safety factor. For example, if the screw is used for double-axial mounting, then the outer ball nut must be inserted into the nut, causing a secondary load.

Applications

The present invention provides a simple, yet highly effective way to mount a ball screw. Its absence of insert slots or through holes makes it simpler to assemble and provides a more uniform nut. The lack of mechanical features also reduces heat treatment issues, and the nut's hardness can be uniformly hardened. As a result, the screw's overall performance is improved. Here are some examples of applications for ball screws.
Preloading is the process of applying force to a ball screw. This increases the rigidity of the screw assembly and eliminates backlash, which is lost motion caused by clearance between the nut and ball. Backlash disrupts repeatability and accuracy. Spacer preloading involves inserting force between 2 ball nuts and transmitting it through the grooves. This method is ideal when preloading is needed in large quantities. In addition to increasing rigidity, preloading can improve accuracy.
Ball screws require careful care in their working surfaces to prevent contamination. Rubber or leather bellows can be used to protect their surfaces, while positive air pressure can be applied to the screw. Preloading eliminates backlash, a common problem among screw assemblies. In addition to the numerous applications for ball screws, they are also critical to computer-controlled motion-control systems and wire bonding. And there are many more examples. So what are the benefits of using these devices?
The spring preloading system uses a spring in between 2 ball nuts, applying tensional forces to the ball nuts. This spring creates grooves in the nut's middle, which facilitates recirculation of the balls. The spring preloading mechanism is more compact than the double nut mechanism, but the lengthening of the lead reduces the ball screw's load capacity. Its compact design makes it ideal for small clearance assemblies.
air-compressor

Maintenance

In addition to performing maintenance tasks yourself, the manufacturer of ball screws should offer reverse engineering services that will enable them to identify specific problems. The process of reverse engineering allows ball screw manufacturers to develop new ball screws and parts. In the event that a ball screw is beyond repair, a manufacturer can often save a significant amount of money by repairing it instead of replacing it. In addition to repairing a ball screw, the manufacturer should also offer free evaluation services for the component. Reconditioning and replacement involve the use of new parts, while reloading and replacement replace the screw.
Performing routine maintenance checks on ball screw assemblies is essential for maintaining optimal performance and extending their service life. Overtime, excessive wear can lead to a variety of problems, including backlash, vibration, and ball bearing noise. In addition, the increased friction increases the required torque for turning a screw, causing system failure and significant downtime. To ensure that a ball screw is fully functional, it must be checked for wear and maintain the proper lubrication system.
Discoloration or pitting on a ball screw indicates that it is in need of repair. The same is true if there are chatter marks in the ball groove. Oftentimes, a ball screw needs a new lubrication seal or wipers. Additionally, it may be missing or over-wearing, which could result in permanent failure. Finally, excessive power draw could be a sign of improper lubrication or improper installation.
Proper maintenance is essential for any machine tool. When performed properly, machine tools can last decades with continuous use. Proper care and maintenance is essential to ensure long life and optimal performance. In addition to improving machine tool uptime, proper maintenance affects the accuracy and repeatability of the end product. Therefore, premium machine tool manufacturers focus on the performance and durability of ball screws. They develop innovative designs and lubricants to optimize the lifespan of their products.

China Good quality Hydraulic Breaker Spare Parts Front Head Back Head and Cylinder     wholesaler China Good quality Hydraulic Breaker Spare Parts Front Head Back Head and Cylinder     wholesaler

China high quality Supply Earthmoving Equipment Hydraulic Breaker Cylinder with high quality

Product Description

ARE YOU LOOKING FOR A RELIABLE FACTORY FOR HYDRAULIC BREAKER SPARE PARTS WITH
                                      STABLE QUALITY & AFTER-SALES SERVICE GUARANTEES?

DO YOU HAVE CLIENTS WHO WANT TO BUY THE DURABLE LONG LIFETIME & HIGH-END FINISH
                              HYDRAULIC HAMMER SPARE PARTS AS JAPAN OR KOREA'S?

ARE YOU FINDING JAPAN/KOREA SUPPLIERS' OFFER SO HIGH AND THINK ABOUT
                                           A BETTER ECONOMIC ALTERNATIVE?

HOW ABOUT A PERSON HELP YOU TO SOLVE ALL THE PROBLEMS AND LEAVE YOU
                                           TO SIT BACK AND RELAX?

Hi, I am Ryan, I have 8 years of international trade sales experience and now working for
HangZhou Zhongye Machinery Manufacture Co., Ltd.

I know you are looking for high-quality SPARE PARTS while affordable like this:

Now you can stop searching and comparison, I bet our factory can be your best choice. WHY?

1, Stable quality in various actual fields worldwide

Our chisels have been supplied to over 70 companies of more than 30 countries
Certificate such as CE, ISO, can also be a proof of our quality.

2, Well equipped production facility.

The one-stop operational resource that covers 2 manufacturing factories for hydraulic breaker, chisel,
and spare parts which 10 years' history Zhongye machinery factory for mid-range products.

Second NEW factory with an up-to-date production facility for high-end hydraulic breaker, chisel, and spare parts;

Third, We have pistons for the following hydraulic breaker/hammers:
you can also send us your drawing for mass customized production.
 

SOOSAN TOKU NPK GENERA HANWOO TOYO ALTAS COPCO RAMMER
FURUKAWA KRUPP MONRABERT STANELY OKANA INDECO MSB DAEMO

 

Brand Name

Below models are part of hydraulic breaker models for your refference.

Soosan SB40 SB43 SB45 SB50 SB60 SB81N SB81 SB81A SB100 SB121 SB130 SB140 SB151
Furukawa   HB20G HB30G HB40G HB8G HB10G HB5G HB15G
F19 F20 F22 F35 F70 FX47 F45 FS37 F27 FS22 F27 F12 F9 F6
Toku TNB150  TNB151 TNB14E TNB5M TNB4E TNB6E TNB7E TNB14B TNB14 TNB190 TNB230
General   GB8AT GB8T GB8F GB2T GB5T GB4T GB6T GB540E GB580E
NPK H2X NPK H4X NPK H6X NPK H-7X  NPK H-9X  NPK H-10X 
H-10XB E-12X  E210A/B NPK NPK H12XB NPK H14X NPK H20X
Daemo S2100 S2200 S2300 S3000
Krupp HM960  HM951 HM720 HM980 HM1000 HM1500
MSB MS600 Xihu (West Lake) Dis.350
Okada OUB308 OUB312 OUB316
Toyo         THBB401 THBB801 THBB1600 THBB2000
Hanwoo RHB323 RHB313 RHB305 RHB325 RHB326 RHB328 RHB330 RHB340 RHB350

3, Years of accumulated Art-Heat Treatment Technology

10 years of accumulated heat treatment technology, making the our spare parts 2 TIMES durable than most small workshops.

4, Quality Assurance

Every working procedure would influence the product quality, thus each working procedure should
sustaining testing on our production lines.  Our warranty policy could make you rest easy.

5, After-sales service

With my 8 years' export experience, I was confident I could ensure the smooth process from order
receiving until the order arrives at your hand.

Hence, Zhongye is available to show you our product range and CZPT you in the choice of the products that best fit your needs,

Isn't good enough?

I have a trade secret can make your business more profitable and competitive.

I guess most of your competitors haven't known that,

Just send me your detailed inquiry at the bottom and I will share it with you for free.

Grab the opportunity today! or your competitors may have learned that.

 

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You'll have a better understanding of your screw shaft's threads after reading this article. Here are some examples. Once you understand these details, you'll be able to select the best screw nut for your needs.
screwshaft

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut's pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt's pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw's helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw's thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders' Association in 1871.
Generally speaking, the major diameter of a screw's threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw's thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw's proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw's thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they're made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they're a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes' screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw's construction, as well as its lubrication conditions. Finally, a screw's end fixity - the way the screw is supported - affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China high quality Supply Earthmoving Equipment Hydraulic Breaker Cylinder     with high qualityChina high quality Supply Earthmoving Equipment Hydraulic Breaker Cylinder     with high quality

China best Hydraulic Cylinder for Hydraulic Rock Breaker near me manufacturer

Product Description

1.Products photo

2.Technical Parameter of Breaker
 

CTHB hydraulic breakers have 7 types , compatible with all kinds of excavators such as Doosan, Dawoo, Volvo, Hitachi, Kato, Kobelco, Komatsu, Sumitao, Liebheer, Hyundai, Cat, Jonyong, HangZhouang, Liugong, Yucai, Case,Fotonlovol and Loader etc.CTHB Hydraulic Breaker mainly Include 

1.Side Type;
2.Top/Open Type(Head and Body Seperate);
3.Top/Open Type(Head and Body Together);
4.Silence Type;
5.Skid Steer Type;
6.Backhoe Type;
7.Post Driver Type
3.Spare Parts

We supply the parts of Hydraulic Breaker, such as cylinder, front head, back head, piston, chisel, accumulator, seal kits, side bolts, through bolts, etc.

CTHB Spare parts for Hydraulic breaker:
1) Reliable quality
2) Very competitive price
3) Long time service
4) Prompt shipment

4.Furukawa Type
5.Soosan Type

OEM IS AVAILABLE

MOQ IS ONE

ANY COLOUR CAN DO
SOOSAN SERIES
SB10 SB20 SB30 SB40 SB43 SB45 SB50 SB70 SB81 SB81A SB100 SB121 SB131 SB140 SB151
FURUKAWA SERIES
HB15G HB20G HB30G HB40G

6.Customer's Photo

7.Certification

8.Our exhibition

9.Company Profile
HangZhou chengtai construction machinery Co., Ltd. is located in the beautiful coastal city of HangZhou, ZheJiang . It is a modern enterprise specializing in R & D, production and sales of front-end hydraulic attachments for excavators. The company has been committed to the development, production and sales of excavator front-end devices for many years. The company mainly produces:various front-end such as hydraulic breaker,post driver,earth auger drilling,grapple ,compactor,quick connector,ripper,etc. Attachment device can be adapted to domestic and foreign large, medium and small excavators such as Doosan,Komatsu,Baili, Kobelco, Liugong,Xugong,Carter,etc., and can be customized according to the customer's operating environment requirements Special attachments for working conditions. Our company has advanced production equipment, perfect product testing methods and quality assurance system.The company has a professional technical team, from the development of new products to the production process in the process, and then to the after-sales service of the product, to provide firm technical support for high-quality products.

10.Hot Sale

 

 

The Mechanical Advantage of a Pulley

A pulley is an important tool for many tasks. The advantage that it offers over a hand-held mechanism is its mechanical advantage. In this article, we'll discuss the types of pulleys and their applications. We'll also look at the types of compound pulleys. And, of course, there's a little bit about the mechanical advantage of a pulley. This article will help you decide whether this tool is right for your needs.
pulley

Mechanical advantage of a pulley

A pulley has a mechanical advantage over a lever because it is able to produce more force over longer distances. The mechanical advantage of a pulley sounds brilliant and could produce energy. But what exactly is this mechanical advantage? Let's take a look. First, consider how a pulley works. A rope supports a 100kg mass, which requires 500 newtons of force to lift. If the rope supports a 100kg mass, 2 sections of rope can support that load. Using a pulley, you can lift the same weight with half the force.
A pulley's ideal mechanical advantage is the ratio of the force applied to the total length of the rope. The larger the radius, the greater the mechanical advantage. A pulley made up of 4 rope segments has an ideal mechanical advantage of four. Therefore, a four-segment pulley would multiply the force applied by four. As the numbers on the rope segments are smaller than the total length of the rope, it would be better to use a compound pulley.
The mechanical advantage of a pulley can be calculated by using the T-method. The first step in calculating the mechanical advantage of a pulley is defining the force you need to lift. Then, divide that force by 2 to calculate the amount of force you need to lift the load. Once you know this amount, you can design a pulley to meet your needs. That way, you can achieve the perfect balance between the 2 types of pulleys.

Types of pulleys

The main function of the pulley is to change the direction of the force. The mechanical advantages of a single pulley are two. Ideally, 2 pulleys should have 2 or more mechanical advantages. The mechanical advantage of compound pulleys can be increased to 2 or more. The number of pulleys that make up the composite pulley will determine the mechanical advantage. Certain types of pulleys are combined in 1 housing.
A stepped pulley is a set of pulleys with stepped surfaces. Each face is anchored to the mid-axis in an ordered sequence. This design gives these pulleys their name. They are used to increase and decrease the speed of the driven pulley. Step pulleys are usually used in pairs. They can be straight or stepped, but usually come in pairs.
The 3 main types of pulleys are pulleys, rope pulleys, and chain pulleys. Pulley Pulley systems use mechanics to lift and lower heavy objects. The Greek historian Plutarch credits the invention of the pulley to Archimedes of ancient Sicily. The Mesopotamians used rope pulleys to lift water around 1500 BC, and Stonehenge is said to have been built using a rope pulley system.
pulley

Application of pulley system

The advantages of using a pulley system are numerous. The ability to lift heavy objects is a good example. The pulley system makes it easy for people to lift blocks and other large objects. It can be used in many different applications, from utility elevators to construction cranes. In addition, it is widely used on sailing boats. If you want to learn more about the benefits of a pulley system, keep reading!
You can use the pulley system to water flowers or water plants. Some of them even lowered the pot to make cleaning easier. Pendant lights are another great place to install a pulley system. Climbing and fishing are just some of the activities that utilize the pulley. They are great for fishing and gardening. And since they are so versatile, you can use the pulley system anywhere.
To get the most out of your pulley system, you must choose a product that has all of the above attributes. A high-quality pulley must have a large pulley diameter and be made of sturdy materials. The cables must also be properly supported in the pulleys to ensure a long service life for your investment. A good cable should have minimal cracks and be lubricated. These factors are the most important considerations when choosing a pulley system for your needs.

composite pulley

Composite pulley systems combine 2 or more movable pulleys. These systems maximize the force to move the weight and can also change direction so they can be used to lift weights. Composite pulley systems can be as simple or as complex as your needs. For example, a pulley pulley system uses multiple pulleys on each axis. This method is often used for hoisting building materials.
A compound pulley system has 2 or more rope segments, each of which is pulled up on a load. It can increase lift by making objects move faster. These systems are common on large sailboats and construction sites. Composite pulleys are also available for larger boats. Due to their versatility, they are versatile tools for construction sites and large sailboats. If you have their app, you should consider buying one.
The main advantage of composite pulleys is their versatility. You can use them to lift weights or use them to save energy. Composite pulleys are especially useful for lifting heavy objects. For example, you can tie a paper clip to the end of the rope and pull it up. The flag is then lifted into the air with the help of compound pulleys. Composite pulleys are a great invention and they are often used in construction.

security considerations

There are several safety considerations to consider when using pulleys. The first is Secure Workload (SWL). This value is a general guideline for the maximum weight a pulley can safely handle. It varies according to the height and angle of the pulley. Besides SWL, there are some other factors to consider. Consider each 1 before deciding on the pulley that best suits your needs.
Another safety consideration is the weight of the load. Since the highs of the pulley are higher than the lows, it doubles in weight. The weight of the high point should not exceed 4 kN. The safety factor is calculated by multiplying the strength of the pulley by the weight of the load. Secondary COD has a safety factor of 10:1 and bulletproof primary anchors should be used with pulleys.
If using a chain hoist, you must be trained in the appropriate type of lifting. It is important not to hang on the top hooks of the structure, nor to overload or rig the hooks with multiple slings. You should also avoid corroded or damaged chains, as they can cause the crane to jam or overload. A worn chain can even cause the load to drop.
pulley

Components of a pulley system

Proper design of the pulley system can increase the life of the cables and pulleys. Larger diameter cables should be selected as they are more durable than smaller diameter cables. The cables should also be supported in the pulley grooves. The pulley must be designed to be compatible with the cable and its lubrication should be optimal. Proper lubrication of cables and pulleys will ensure maximum durability and longevity.
The first type of pulley is called a fast pulley. These pulleys are used for quick start and stop of the machine. These pulleys are usually mounted in pairs on the countershaft of the machine. One pulley is tightly mounted on the machine shaft, while the other pulley is fitted with a free-spinning mechanism. When the machine is running, the belt is mounted on the tensioner pulley, and when it is stopped, the belt slides on the independent pulley.
Composite pulley sets reduce the overall effort required by reducing the size of the pulley. These are usually attributed to Archimedes. Flat pulleys are often used in flat belt driven transmission systems. These are used in high-speed, low-power applications. Flat pulley idlers are also used on the back of traditional V-belts.

China best Hydraulic Cylinder for Hydraulic Rock Breaker     near me manufacturer China best Hydraulic Cylinder for Hydraulic Rock Breaker     near me manufacturer

China supplier Hydraulic Breaker Spare Parts Cylinder for Furukawa Soosan near me shop

Product Description

****OUR FACTORY

***we are a factory in HangZhou city,ZheJiang province,China

specialized in manufacturing hydraulic breaker ,quick hitch ,ripper ,etc for excavator attachment .

OUR FACTORY IN HangZhou CITY,ZheJiang PROVINCE ,CHINA
OUR PRODUCT SPECAILIZED IN MANUFACTURE HYDRAULIC HAMMER
MOQ 1 SET
OEM YES.BECAUSE WE ARE A FACTORY
COLOR ANY COLOR COULD DO FOR YOU
PAYMENT 30% DEPOSIT ,BALANCE BEFORE SHIPPING ,T/T OR L/C
DELIVERY DATE 1-50 SET 1-25DAYS.
SHIPPING BY SEA O BY AIR

 

* HangZhou Factory Direct Price
* Small order is welcome, MOQ 1 set
* Nice quality, 1 year warranty
* Chisel diameter from 35-210mm
* Breaker suit any brand 0.5-70 ton excavator
* Fit to machine as below:

YTCT HYDRAULIC BREAKER HAMMER:

MODE NUMBER CHISEL DIAMETER SUIT EXCAVATOR (WEIGHT) BRAND OF EXCAVATOR HYDRAULIC OIL FLOW HYDRAULIC PRESSURE BLOW FREQUENCY MAIN BODY WEIGHT HOSE DIAMETER ACCUMALATOR PRESSURE
YTCT MM TON   L/MIN KG/CM2 BMP KG INCH KG/CM2
YTCT 35 0.5-0.8 ANY BRAND 10--20 90-120 800-1400 40 1/2 /
YTCT10 40 0.8-2.5 15-25 90-120 800-1400 53 1/2 /
YTCT20 45 1.2-3.0 20-30 90-120 700-1200 71 1/2 /
YTCT30 53 2.5-4.5 25-50 90-120 600-1100 89 1/2 /
YTCT40 68 4--7 40-70 110-140 500-900 156 1/2 /
YTCT43 75 6--9 50-90 120-150 400-800 214 1/2 /
YTCT45 85 7--14 60-100 130-160 400-800 282 1/2 /
YTCT50 100 10--15 80-110 150-170 350-700 479 3/4 /
YTCT70 135 16-25 130-150 160-180 400-800 850 1 /
YTCT81 140 18-26 120-180 160-180 350-500 920 1 /
YTCT81A 140 18-26 120-180 160-180 350-500 956 1 60
YTCT100 150 27-35 150-190 160-180 350-700 2218 1 60
YTCT121 155 28-35 180-240 160-180 300-450 2577 1 60
YTCT131 165 30-40 200-260 160-180 250-400 1442 1 60
YTCT140 165 30-40 200-270 160-180 250-380 1590 1 60
YTCT151 175 35-40 210-290 160-180 200-350 1925 5/4 60
YTCT151L 175 35-45 220-270 200-240 200-300 1933 5/4 60
YTCT185 185 40-55 220-270 180-220 250-320 2295 5/4 60
YTCT190 190 45-60 220-290 180-220 180-200 2526 5/4 60
YTCT195 195 45-60 220-290 180-220 180-200 2600 5/4 60

ALL THE PRICE WITH SPARE PARTS AS BELOW:

1.all the price with wooden box pacakage .
2.all the price with the standard spare parts.
** -----2 chisels
** -----2 oil tube
** -----1 N2 gas bottle.
** -----1 tool box
** -----1 N2 pressure gauge

PACKING AND SHIPPING

1.Inner is stretch film, outside is export plywood case or as customer's request

2.Delivery time:Usually 3-7days (1-5sets) after down payment.

3..We can arrange CZPT or air transportation according to your request from any port of China.

HOW TO CHOOSE OUR BREAKER ?

1. PLEASE LET US KNOW YOUR EXCAVATOR MODEL NUMBER OR WEIGHT OF MACHINE.

2.PLEASE LET US KNOW WHAT COLOR DO YOU NEED FOR BREAKER .

3.PLEASE CHECK THE ABCDE SIZE FOR US ,ARM EAR WIDTH ,PIN DIAMETER AND PIN CENTER TO PIN CENTER SIZE .

4.CHOOSE WHAT TYPE OF HYDRAULIC BREAKRE DO YOU NEED ,THANKS.

NEED FREE CATALOG OR MORE PRICE,SEND ME INQUIRY AS BELOW.

MISS EVA WILL REPLY SOON,THANKS.

 

What is a bushing?

A bushing is a cylindrical lining made of a flexible material inside a metal housing. The inner squeeze tube of the bushing helps prevent it from being squeezed by the clip. The material also reduces friction and isolates vibration and noise, while improving performance. This article discusses some of the most common uses for bushings. In this article, we'll discuss the most important reasons to choose a bushing for your transmission.
DESCRIPTION Anti-friction cylindrical lining

A bushing is a bearing that minimizes friction and wear within the bore. It is also used as a housing for shafts, pins, hinges or other types of objects. It takes its name from the Middle Dutch word shrub, which means "box". It is also homologous to the second element of blunderbuss. Here's how to identify bushings and how to use them.
bushing

Vibration isolation

Vibration mounts are required for inertial guidance and navigation systems, radar components, and engine accessories. Bushings isolate vibration and provide a more robust design in these applications. Bushings help eliminate vibration-related operational challenges and help protect expensive equipment from damage. Below are several types of vibrating mounts and the differences between them. Each type has unique uses and applications, and the type you choose will depend on the nature of the components and the environment.
Vibration isolation is an important safety feature of many modern machines and instruments. Used to reduce the dynamic consumption that an object suffers at runtime. Instead, it protects equipment and structures from amplitude-related damage. Bushings insulate objects from vibration by reducing the amount of dynamic action transferred from the object to the support structure. Bushings are a popular choice for vibration equipment manufacturers.
Vibration isolation is important in many industrial applications. Vibration can wreak havoc on electronic and mechanical equipment. The forces exerted by vibration can reduce the life expectancy of equipment, leading to premature failure. The cost of isolation depends on the weight of the object being isolated. Most isolators have minimum damping in the isolation region and maximum damping at natural frequencies. In addition, the cost of installation, transportation and maintenance is usually included in the cost.
In addition to providing shock and vibration isolation, bushings help stabilize components by absorbing shock. These devices may need to be replaced in the long run, and your machine design may dictate whether you need to buy more than one. Bushings are an important part of your equipment, so don't skimp on quality when choosing a vibration isolation mount. You won't regret it. They won't break your budget, but will keep your equipment safe.
bushing

reduce noise

A properly positioned tree will block the view between the noise source and your house. Make sure the tree is taller than your house to effectively reduce noise. Also, make sure the sprocket and axle are properly aligned. The less noise they make, the better. If you have a noisy neighbor, you may want to consider installing a bushing at the front of the house to block the noise.
While it's possible to replace the bushing yourself, it's best to make sure you follow some basic procedures first. Park your car on level ground and apply the brakes before removing the hood. Check that the wheels move freely. Remember to wear gloves and goggles, and don't cut yourself with sharp objects when changing bushings. If you can't see under the hood, try opening the hood to allow more light to reach the engine area.
SuperPro bushings are designed to reduce noise and vibration in the automotive industry. They are a popular choice for aftermarket bushing manufacturers. While OE rubber bushings are soft and quiet, these polyurethane bushings are specifically designed to eliminate these noise issues. By determining the diameter of your vehicle's anti-roll bars, you can choose the right bushing for your vehicle. You'll be glad you did!
Damaged bushings can cause the stabilizer bar to become unstable. This, in turn, can cause the steering components to misalign, creating a loud ding. Worn bushings can also cause the wheel to squeak as it moves. If they're worn, you'll hear squeaks when cornering. You may even hear these noises when you are turning or changing lanes.
bushing

a bearing

A bushing is a component that provides a bearing surface for the forces acting axially on the shaft. A typical example of a thrust bearing is a propeller shaft. The bushing can be a separate part or an integral part of the machine. Typically, bushings are replaceable, while integral bearings are permanent and should not be replaced unless worn or damaged. Bushings are most commonly used in machinery, where they allow relative movement between components.
The bushing is usually an integral unit, while the bearing may have several parts. Simple bushings can be made of brass, bronze or steel. It is often integrated into precision machined parts and helps reduce friction and wear. Typically, bushings are made of brass or bronze, but other materials can also be used. Different designs have different applications, so you should understand what your application requires before purchasing a sleeve.
The most common uses of plain bearings are in critical applications, including turbines and compressors. They are also commonly used in low-speed shafting, including propeller shafts and rudders. These bearings are very economical and suitable for intermittent and linear motion. However, if your application does not require continuous lubrication, a plain bearing may not be required.
Another popular use for sleeves is in food processing. These bearings can be made from a variety of materials, including stainless steel and plastic. Plastic bearings are more cost-effective than metal and are an excellent choice for high-speed applications. These materials are also resistant to corrosion and wear. However, despite their high cost, they can be made from a variety of materials. However, in most cases, the materials used for plain bearings are aluminum nickel, phosphorus and silicon.

China supplier Hydraulic Breaker Spare Parts Cylinder for Furukawa Soosan     near me shop China supplier Hydraulic Breaker Spare Parts Cylinder for Furukawa Soosan     near me shop

China high quality China OEM Factory Manufacturer for High Quality Hydraulic Breaker Main Body Front Head Back Head Cylinder Assy for Rock Breaker Hb20g Hb30g Sb70 Sb81 Sb121 wholesaler

Product Description

Company Introduction:

Company license,certificates,exhibition photos and customers feedbacks:

Production process:

Popular models for world market:

Breaker Parameter:

 Products photos:

product-list-1.html product-list-1.html

WARRANTY: ONE YEAR

Welcome to inquiry and please contact us freely!
contact-info.html

 

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts - a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You'll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you'll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20's geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click "Next" to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment - 0.02 mm and 0.08 mm - with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China high quality China OEM Factory Manufacturer for High Quality Hydraulic Breaker Main Body Front Head Back Head Cylinder Assy for Rock Breaker Hb20g Hb30g Sb70 Sb81 Sb121     wholesaler China high quality China OEM Factory Manufacturer for High Quality Hydraulic Breaker Main Body Front Head Back Head Cylinder Assy for Rock Breaker Hb20g Hb30g Sb70 Sb81 Sb121     wholesaler